What is the True Loss Due to Piracy?

Evidence from Microsoft Office in Hong Kong

Tin Cheuk Leung*

Chinese University of Hong Kong

April 10, 2012

Abstract

Using a unique conjoint data set drawn from 281 college students in Hong Kong, I estimate a random-coefficient discrete choice demand system for Microsoft Office from legal and various illegal sources. Counterfactual results show two things. First, most student would switch to Internet piracy even if the government eradicated street piracy. This explains why software piracy in Hong Kong remains well above 40% despite the government’s successful measures to bring down street piracy. Second, the true gain from shutting off all sources of piracy is HK$48.6 (US$6) per person, only 15% of the Business Software Alliance’s estimated cost of piracy.

*I am indebted to my thesis advisor, Pat Bajari, for his continuous encouragement and support. I thank Tom Holmes, Kyoo il Kim, participants in the HKUST applied micro workshop, and at FESAMES 2009, the CES 2010 Annual Meeting, the SAET 2010 Conference and the second Asia-Pacific Innovation Conference 2011, and two anonymous referees for their valuable comments. I also thank Katherine Leung, Wen-Tai Hsu and Linda Yung for administering surveys; Zoey Li and Aric Chan for their diligent data input; and Ka Fai Li for educating me about software piracy. Any errors are my own. Correspondence: tleung@cuhk.edu.hk
JEL Classification: L86, K42, O34

Keywords: Business Software Alliance, intellectual property enforcement, Microsoft Office, software piracy
1 Introduction

As a member of the World Trade Organization since 1995, Hong Kong has been actively enforcing the copyright law required by the Agreement on Trade-Related Aspects of Intellectual Property Rights. The Prevention of Copyright Piracy Ordinance, enacted in 1998, requires all optical disc factories in Hong Kong to obtain manufacturer licences. These factories are also subject to frequent inspection. An amendment of the same Ordinance in 2002 further requires manufactures of stampers (“master discs”) in Hong Kong to obtain licences from the Hong Kong Customs and Excise Department. The Ordinance, together with efforts to crack down on syndicates of retail shops selling pirated software applications, has to a large extent eradicated street piracy in Hong Kong. As Table 1 shows, the number of retail shops engaged in piracy dropped dramatically from about 1,000 in 1998 to less than 10 in 2010.

[Insert Table 1]

The almost total disappearance of street piracy, however, has not been accompanied by a corresponding slump in overall software piracy. According to the Business Software Alliance (BSA), the software piracy rate in Hong Kong only declined from 59% in 1998 to 45% in 2010.\(^1\) One of the main reasons is that increasingly more people substitute a pirated copy of software from a retail shop with a pirated copy downloaded from the Internet.

The lower cost of accessing the Internet, peer-to-peer (P2P) file sharing software such as BitTorrent (BT), and close-to-zero risk of persecution are among the factors contributing to the emergence of Internet piracy.\(^2\) Whatever the reason, the widespread of Internet piracy had a stifling effect on the effectiveness of Hong Kong’s copyright enforcement policy.

This is hardly an issue relevant only to Hong Kong. In many developing countries, such as mainland China, street piracy is still a main concern for copyright holders. At the
same time, the explosion of Internet use means that Internet piracy is also growing. For Hong Kong as well as these developing countries, the degree of substitutability between street and Internet piracy is an important determinant of the effectiveness of any copyright enforcement policy. For instance, in the extreme case in which street and Internet piracy are perfect substitutes, the level of software piracy would stay the same even if a government could completely eradicate street piracy. How much the substitutability between different sources of piracy has stifled the effectiveness of such policy is an empirical question that this paper will address.

An estimate of the substitutability of, and more general estimates of demand for, copyrighted products from legal and illegal sources, will not only help us to evaluate the effectiveness of different copyright enforcement policies, but will also be used to estimate the “correct” profit gain from eradicating piracy. In its public campaign against piracy, the BSA often quotes estimates of profit loss due to piracy under the assumption that one less pirated copy will translate into a legitimate sale. An accurate estimate of substitutability among different sources of piracy and the outside options will correct the BSA’s estimates.

This paper estimates the demand for Microsoft Office (hereafter Office) from legal source and different sources of piracy, quantifies the substitution pattern among the different sources, and evaluates the effectiveness of different copyright enforcement policies in a world with more than one source of piracy. To the best of my knowledge, this is the first study to conduct such an analysis for any copyrighted product. For the empirical analysis, I designed a conjoint survey to collect a unique data set (Section 3) on Office, one of the most successful and also heavily pirated software applications. The survey data are from 281 college students in Hong Kong. In the survey, students answered two types of questions. First, they provided
information on their demographics and consumption of copyrighted products such as Office. Second, they indicated the way in which they would acquire Office (from a legal source, through street piracy, or through Internet piracy) in ten hypothetical tasks. In each of the ten tasks, the prices of Office from different sources were exogenously randomized within a pre-specified range, which provides identification for my empirical model.

My empirical analysis consists of two parts. First, I set up a random-coefficient discrete demand model for Office (Section 4). I follow Rossi, Allenby, and McCulloch (2005) to set up a hierarchical Bayesian discrete demand model for Office from different sources, with a mixture of normal priors. Implementation of posterior inference takes the form of a hybrid of Gibbs sampling and the Metropolis-Hasting algorithm. I then use the estimates to conduct counterfactuals to evaluate the effectiveness of various copyright enforcement policies (Section 5).

The main result is that the two sources of piracy are close substitutes for each other. When the government completely eradicates street piracy, the demand for Office from both the legitimate source and from Internet piracy will increase. Furthermore, because street and Internet piracy are close substitutes, the demand for Office from Internet piracy would increase more. Microsoft’s expected profit will only increase by HK$15.2 ($2) per person in the sample.

In addition, even in a world without piracy, those who would usually acquire Office illegally would decide not to buy. By assuming one less pirated copy will translate into a legitimate sale, the BSA overestimates the loss due to piracy. The results in the counterfactuals show that the true gain from shutting off all sources of piracy is only 10 - 15% of what the BSA would claim it to be.
The remainder of this paper is organized as follows. Section 2 briefly reviews the related literature. Section 3 discusses the conjoint survey data set. Section 4 sets up the demand model for Office, and discusses the results of the estimation. Section 5 describes counterfactual experiments using the results from Section 4. Section 6 concludes the paper.

2 Literature Review

This study is related to several others that have investigated the impact of counterfeits and illegal downloads on legitimate markets. Since the work of Grossman and Shapiro (1988a) and Grossman and Shapiro (1988b), there have been numerous empirical studies on the sources and effects of counterfeits. Eisend and Schuchert-Guler (2006) provide a summary of empirical studies that investigate the reasons for counterfeit behavior. Most studies cited in the summary rely on survey or experimental data for their analysis. Qian (2008) analyzes the effect of counterfeits on various market outcomes using data on counterfeit sale quantities, prices, and costs collected from the brand-protection offices of authentic companies in the Chinese shoe industry and then combining the companies’ annual financial statements and other relevant company records for 1993-2004 gathered from the Chinese Bureau of Statistics Industrial Census and separate surveys. A natural experiment approach is then used to show that brands with less government protection differentiate their products through innovation, self-enforcement, and subtle high-price signals, among other factors, to reduce counterfeit sales.

Numerous empirical studies have also been conducted on the effect of music piracy on album sales. Oberholzer-Gee and Strumpf (2007) and Blackburn (2004) gather panel data sets on music piracy by tracking individual illegal downloads on a P2P network. They then
combine weekly album sales with their novel data on weekly download volumes to estimate the effect of illegal downloads on album sales. Hui and Png (2003) use cross-country data on music CD sales and piracy levels defined by the International Federation of the Phonographic Industry from 28 countries, and show that the demand for CDs decreased with piracy between 1994 and 1998. Rob and Waldfogel (2006) conduct surveys in colleges to create a panel data set on legal music consumption and illegal downloading.

Due to data limitations, these papers do not separately account for the replacement effect of street piracy and Internet piracy.

This paper is also related to several studies that examine the level of intellectual property rights (IPR) protection across countries. Ginarte and Park (1997) develop a comprehensive index of patent protection and find that it is positively related to several economic variables. Marron and Steel (2000) use the BSA software piracy statistics and find that IPR protection depends not only on economic concerns but also on national culture and institutions. The substitution pattern between street piracy and Internet piracy analyzed in this paper is a determinant not examined in these studies.

The lack of real market data led to the use of conjoint survey analysis in this paper. Since the work of Green and Rao (1971), several studies have provided compelling evidence that conjoint survey data can generate reliable demand estimates. Applications of conjoint survey analysis abound. There are also several conjoint studies using a hierarchical Bayesian model to estimate random demand coefficients, but most of them do not have a mixture of components of normal priors. Two notable exceptions are the studies of Chandukala, Edwards, and Allenby (2011) and Leung (2009).
3 Data Collection and Description

One of the main contributions of this paper is that it provides estimates of the degree of substitutability between street piracy and Internet piracy. This requires a panel data set on the consumption choices from a legal source, street piracy, and Internet piracy. However, similar to other illegal activities, data with such features are difficult to come by for software piracy. This led me to collect conjoint survey data from college students in Hong Kong.

3.1 Conjoint Survey

I conducted the survey in fall 2008 and spring 2009 in seven undergraduate classes at the Open University of Hong Kong (OUHK) and the Chinese University of Hong Kong (CUHK). The survey was administered at the end of classes, and most students finished it within ten minutes. Of 400 students in the classes, 281 turned in their surveys.

I focused on one particular software product in the survey—Office, which is one of the most popular, and also heavily pirated, desktop applications.

The survey consisted of two parts. In the first part, students report their demographic information and consumption behavior of other copyrighted goods like Microsoft Windows and movies.

The second part was the conjoint survey. Green and Rao (1971) were the first to use conjoint analysis in marketing. I follow the approach of Louviere and Woodworth (1983) in using choice-based conjoint analysis, which integrates conjoint analysis with discrete choice analysis. Respondents make choices in hypothetical situations with hypothetically set prices and other product attributes for different products. Conjoint survey data are also known as “stated-preference” data, as opposed to “revealed-preference” data, which are collected
Conjoint analysis is sometimes called “trade-off analysis.” It is based on the assumption that purchase decisions are made according to multiple criteria and consumers make trade-offs among several product attributes. It is thus important to decide which attributes to include in a conjoint survey.

At the beginning of the conjoint survey, I described the Office package, which includes four applications:

- Microsoft Word 2007
- Microsoft Excel 2007
- Microsoft PowerPoint 2007
- Microsoft FrontPage 2007

[Insert Figure 1]

There were ten hypothetical tasks in the conjoint survey. Figure 1 shows a sample of a conjoint task (stimuli). In each task, the respondents chose from one of four options to obtain the Office package: 1. buy a legal copy of the Office DVD; 2. buy a pirated copy of the Office DVD; 3. download a pirated copy of Office from the Internet; and 4. do not buy Office.

In the survey, each choice is represented by three choice-specific covariates.

- Price (ranging from HK$5 to HK$5000)
- Search and download time (ranges from 5 minutes to 5 days)
• Automatic or no update

To ensure that the students could make choices that reflected their preferences, each choice attribute had to be presented in a precise and quantifiable way. For instance, the price level was described by a number, say HK$500, instead of vague term like “expensive.” For this reason, I did not include attributes such as the probability of being caught downloading, which is difficult to quantify.

The first choice-specific covariate was price (of either the legal or the pirated copy). Price is a major criterion when consumers decide the source from which to obtain Office. The market prices of street-pirated Office, legal Office, and student versions of legal Office are approximately HK$50, HK$1170, and HK$500. The second covariate was the time spent searching and downloading, which was the price of obtaining the pirated copy on the Internet. It varied from 30 minutes to ten hours depending on the speed of the Internet connection and the availability of BitTorrent (BT) seeds. The last covariate was regular updates, mostly security updates, provided by Microsoft for most of its products, including Office. Some respondents in the test-run of the survey indicated that one of the reasons for paying for a legitimate copy was the availability of updates. People who download Office illegally would have to download additional files to activate the automatic updater (which requires additional search and download time). I searched online forums in Hong Kong and found updates with relative ease.

In the survey, the covariates were drawn randomly and independently across tasks. This exogenous variation of covariates provided clean identification for my demand model. I also followed the three principles proposed by Sawtooth Software (2008) to draw the levels of each covariate.
1. **Minimal Overlap**: Each covariate level should be shown as few times as possible in a single task.

2. **Level Balance**: Each covariate level should be shown approximately an equal number of times.

3. **Orthogonality**: Covariate levels should be chosen independently of other attribute levels, which will ensure that the effect of each covariate level on utility can be measured independently of all other effects.

To increase the variation of the covariates, I designed five different sets of surveys. With ten different tasks in each of the surveys, there were 50 different tasks in total.

3.2 Conjoint Survey Data vs. Real Market Data

There were some limitations to using conjoint analysis. First, due to the time limit for each survey run (ten minutes), I could not include attributes such as software bugs and quality of the software applications. It is reasonable to assume that they do not vary across different sources of Office. Thus, omitting them would not affect the estimates on the substitutability of Office from different sources. Moreover, because I am not interested in investigating which Office product is more likely to be pirated, fixing the Office products (Word, Excel, PowerPoint, and FrontPage) to be the same across options and across tasks is not a problem.

Second, conjoint analysis requires attributes to be quantifiable. However, some attributes, such as the likelihood of being caught pirating Office, are difficult to quantify. In addition, no one in Hong Kong has ever been punished for buying or downloading pirated Office. In the test run of the survey, which included the likelihood of getting caught (in terms of percentage)
as one of the product attributes, respondents were confused with the interpretation of the attribute levels. I thus decided not to include this as one of the product attributes.

People have concerns regarding the validity of conjoint survey data. Some think that real market data are more reliable because they are revealed-preference data. However, as mentioned in Section 2, various studies in marketing and economics have applied the conjoint survey technique and shown that it can yield reliable demand estimates.

There are several advantages to using conjoint survey data instead of real market data in this research. First, real market data on the consumption of copyrighted goods from legal and various illegal sources are difficult to come by, and conjoint survey is possibly the only way to create a panel data set on this. There are, as mentioned in Section 2, some studies that investigate the impact of counterfeits/illegal downloads on the legitimate market, but they do not estimate the demand for piracy from different sources. This is important for policy analysis because a policy to seize all street pirated copies of Office may only shift people from street to Internet piracy and may not boost legal sales. To the best of my knowledge, this paper is the first to construct such a panel data set using conjoint survey.

Second, conjoint survey analysis provides good instruments. There can be two problems using price data from real market data. First, price is endogenously determined. As Berry, Levinsohn, and Pakes (1995) and Nevo (2000) illustrate, prices can be a function of unobserved product characteristics and can be correlated with unobserved product heterogeneity. This leads to bias in the price estimate. Second, price variation is small for Office. Conjoint survey analysis can avoid these problems because prices, as one of the product attributes, were drawn exogenously and independently using the orthogonality principle described in the previous subsection. Moreover, as the designer of the survey, I could vary the prices of
Office within a pre-specified range which that was substantially larger than what it would have been in real market data.

3.3 Data Description

[Insert Table 2]

Table 2 presents the distribution of the student respondents’ family income and age. About 60% of the students had family incomes of less than HK$20,000 ($2,500) per month, and less than 10% of them had family incomes of more than HK$60,000 ($7,500) per month. Most of the students (76%) were aged 21 years or less, which is the normal age of obtaining a bachelor’s degree, while 6% of the students were aged 30 years or more. The average age was 21. Table 3 summarizes certain of the student characteristics.

Most of the students had exposure to the Internet. On average, they spent about four hours per day on it. Almost 70% of the students had used BT to share digital files recently. Among them, 70% of the CUHK students, who were on average younger, had used BT recently compared to 60% of OUHK students.

[Insert Table 3]

Most of the students had experience with either one or both types of piracy. Table 3 shows that almost 30% of the students were using pirated copies of Microsoft Windows. The proportion is lower than that of other copyrighted goods because most copies of Microsoft Windows are pre-installed on a new computer. Approximately 60 and 70% of the students were using pirated copies of anti-virus software and Office. Of those, more than half of them had obtained copies from the Internet (Table 4).
To illustrate how piracy correlates with demographics, I run a logit regression of the sources of copyrighted goods (with 1 being illegal, 0 being legal) on several demographic variables. As Table 5 shows, students with a lower family income are more likely to obtain anti-virus software or Office through an illegal source. Having used BT recently is also associated with a higher likelihood of obtaining Office through an illegal source.

There could be a concern that young students compose the majority of my sample, because one expects them to have different levels of demand for Office from different sources compared to their older counterparts. This could bias my results in the counterfactuals. I address this concern by making use of the fact that my sample does cover some older students. As I can elicit demand estimates based on demographics, I can do counterfactuals using young and old samples separately and test whether there is a significant difference. More details can be found in Section 5.

4 A Discrete Choice Demand Model for Microsoft Office

An accurate evaluation of different copyright enforcement policies necessitates a thorough understanding of the demand for copyrighted products, both from legal and illegal sources. In this section, I lay out and estimate a model of the demand for Office from different sources using the conjoint survey data. In each task in the conjoint survey, students could choose
either to buy a legal copy of an Office DVD, buy a pirated copy of an Office DVD, download a pirated copy of Office from the Internet, or not buy Office. The standard indirect utility of a choice \(j \) for student \(i \) in task \(t \) is

\[
U_{ijt} = \beta_{ij} + \phi_{i,\text{price}}P_{jt} + \phi_{i,\text{dt}}DT_{jt} + \phi_{i,\text{update}}\text{Update}_{jt} + \epsilon_{ijt},
\]

where \(P_j \) is the price of choice \(j \), \(DT_j \) is the search and download time for \(j \), and \(\text{Update}_j \) is the availability of an update of \(j \). I assume that the random utility component, \(\epsilon_{ijt} \), is i.i.d. Type I extreme value distributed. We can express the demand parameters of student \(i \) in Equation (1) as

\[
\Theta_i = [\beta_{i1}; \beta_{i2}; \beta_{i3}; \phi_{i,\text{price}}; \phi_{i,\text{dt}}; \phi_{i,\text{update}}],
\]

where \(\Theta_i \) is a 1 \(\times \) 6 vector of individual parameters. \(\Theta \) is a \(n_i \times 6 \) matrix whose \(i \)th row is \(\Theta_i \), and \(n_i \) is the number of students in the sample. Define the covariates of choice \(j \) in task \(t \) as \(X_{jt} \) which is a 1 \(\times \) 6 vector. Equation (1) can then be rewritten as

\[
U_{ijt} = \Theta_i X_{jt} + \epsilon_{ijt}.
\]

Student \(i \)'s choice probability in task \(t \) has the following logit form:

\[
Pr_{ijt} = \frac{\exp(U_{ijt})}{\sum_k \exp(U_{ikt}) + 1}.
\]

Denote \(j^*(t) \) as the choice in task \(t \) of the conjoint survey, whereby the likelihood for
student i has the following form:

$$Pr_i = \prod_{t=1}^{10} Pr_{ij^t_i}$$

As Berry, Levinsohn, and Pakes (1995), Nevo (2000), Petrin (2002), and Rossi, Allenby, and McCulloch (2005) argue, random coefficient models generate better estimates of consumer demands and thus, better own- and cross-price elasticities compared to homogenous coefficients models. To exploit the panel structure of this conjoint data, I follow Rossi, Allenby, and McCulloch (2005) and use a hierarchical Bayesian model with a mixture of three components of normal priors to flexibly estimate the random coefficients. In addition to the hyperparameters that describe the distribution of the heterogeneity, the hierarchical Bayesian approach can make an inference on the individual-level parameters as described below.

As the students provided some of their demographic information in the survey, I include aspects of that information to control for observed heterogeneity across students. Define Z_i as a $1 \times n_z$ vector of observable characteristics of i which has n_z elements, and Z as an $n_i \times n_z$ matrix. Following Rossi, Allenby, and McCulloch (2005), the demand model, where unobserved heterogeneity is distributed as a K mixture of normal, can be expressed
as follows:

\[U_{ijt} = \Theta_i X_{jt} + \epsilon_{ijt} \]

\[\Theta_i = Z_i \Delta + u_i \]

\[u_i \sim N(\mu_{ind_i}, \Sigma_{ind_i}) \]

\[ind_i \sim \text{Multinomial}_K(\gamma) \]

where \(\gamma \) is a vector giving the mixture probabilities for each of the \(K \) components, and \(\Delta \) is a \(n_z \times 6 \) matrix of parameters determining the effects of demographics on each utility coefficients. For ease of illustration, I define \(\delta = \text{vec}(\Delta) \). Thus, the individual-level demand parameters for student \(i \), \(\Theta_i \), is a function of his demographics (including family income, recent BT experience, and age) and an unobserved factor, \(u_i \). The unobserved factor, \(u_i \), has a flexible distribution of a \(K \)-component mixture of normal. The set of hyperparameters that describes the distribution of the heterogeneity includes \(\delta \) (the demographics parameters), \(\gamma \) (the mixture probabilities for each of the \(K \) components), and \(\mu_k \) and \(\Sigma_k \) (the mean and variance-covariance matrix of the \(k \)th-component of the distribution of the unobserved heterogeneity, \(u_i \)).

The complete specification with priors over the hyperparameters, including the mixture probabilities (\(\alpha \)), the demographic coefficients (\(\delta \) and \(a_\delta^{-1} \)), the means of the unobserved heterogeneity (\(\mu \) and \(a_\mu^{-1} \)), and the covariance matrices for the unobserved heterogeneity (\(v \) and \(a_v^{-1} \)),
and V), can be taken in convenient conditionally conjugate forms:

$$
\delta \sim N(\bar{\delta}, a_\delta^{-1})
$$

$$
\gamma \sim \text{Dirichlet}(\alpha)
$$

$$
\mu_k | \Sigma_k \sim N(\bar{\mu}, \Sigma_k \times a_\mu^{-1})
$$

$$
\Sigma_k \sim IW(v, V)
$$

$$
\{\mu_k, \Sigma_k\} \text{ independent}
$$

where the joint prior on μ_k and Σ_k is independent conditional on γ.

I follow Rossi, Allenby, and McCulloch (2005) by using a hybrid of Gibbs sampling and the Metropolis-Hasting method to implement posterior inference for this model. I use a hybrid Metropolis method that employs customized Metropolis candidate density to draw Θ_i for each student. Conditional on Θ_i, I use an unconstrained Gibbs sampler to draw δ, μ_k, and Σ_k. In particular, I alternately obtain draws between individual-level parameters in (5) and hyperparameters in (6):

$$
\Theta_i | \text{ind}_i, Z_i, \Delta, \mu_{\text{ind}_i}, \Sigma_{\text{ind}_i}
$$

(5)

$$
\gamma, \text{ind}, \Delta, \{\mu_k\}, \{\Sigma_k\} | \{\Theta\}
$$

(6)

The conditional posterior in (5) is proportional to the product of the likelihood in (4) and the prior of the hyperparameters. I use the Random-Walk Metropolis to obtain draws of Θ_i. The draw of the hyperparameters in (6) can be broken down into a succession of
conditional draws:

\[\text{ind}|\gamma, Z, \Delta, \{\mu_k, \Sigma_k\}, \{\Theta\} \quad (7) \]
\[\gamma|\text{ind} \quad (8) \]
\[\{\mu_k, \Sigma_k\}|\text{ind}, \Theta \quad (9) \]
\[\Delta|\text{ind}, Z, \{\mu_k, \Sigma_k\}, \Theta \quad (10) \]

where the draw of indicators in (7) is a multinomial draw based on the likelihood ratios with \(\gamma_k \) as the prior probability of membership in each component. The draw of \(\gamma \) given \(\text{ind} \) in (8) is a Dirichlet draw. The draw of each \((\mu_k, \Sigma_k) \) in (9) can be made using a standard algorithm to draw from a multivariate regression model. The draw of \(\Delta \) in (10) requires that we pool data from all \(K \) components into one regression model.

There are several advantages to this approach. First, most random coefficient models in the economics literature are implemented through an unconditional likelihood approach in which only the hyperparameters are estimated. The hierarchical Bayesian approach, however, can obtain inference on both individual-level parameters and hyperparameters. Second, most econometrics models often restrict heterogeneity to subsets of parameters such as intercepts. There is no reason, however, to confine heterogeneity to intercepts because differences in price coefficients are also important. The hierarchical Bayesian approach can incorporate heterogeneity for all coefficients without additional computation cost because it only requires a draw from a multivariate normal, instead of univariate normal, distribution in a Gibbs step. Third, it is reasonable to expect a student who prefers Internet piracy (a high intercept coefficient on the choice of Internet-pirated Office) would also prefer street
piracy and have a distaste for legal Office. In particular, I expect correlation among some of the demand coefficients. This approach allows the demand parameters of student i to be correlated without additional computation time. I can back out the correlation among demand coefficients by obtaining draws of the variance-covariance matrix in (9) without restricting the off-diagonal entries to zero. Finally, it is more flexible than the classical approach because it does not restrict students’ unobserved heterogeneity to being normal distributed. Instead, it can be distributed as a mixture of normals, possibly with multiple modes.

4.1 Demand Estimates

I now report the empirical estimates of demand from the conjoint data. Table 6 reports the log-marginal density for different model specifications. The posterior probability, a measure of the goodness of fit, is monotone in the log-marginal density. It should be noted that the log-marginal density already includes an automatic penalty for adding additional parameters (See Rossi, Allenby, and McCulloch (2005)). There is significant improvement in fit from the simple logit model to random coefficient models. The goodness of fit is, however, about the same between the one- and three-component models. Indeed, the price elasticity estimates from the one- and three-component models are not statistically different from each other. (See Section 4.2)

[Insert Table 6]

I now report the empirical estimates of demand from the conjoint data. All basic logit estimates have the expected sign. Instead of reporting the estimates one by one, I offer interpretations using the estimates. First, other things being constant, a respondent would be
willing to pay up to HK$390 to substitute a street-pirated copy of Office (without automatic
update) for a legal copy of Office. Second, other things being constant, a respondent would
be willing to pay up to HK$122 (equivalent to 1.7 days of search and download time) to
substitute an Internet pirated copy of Office (without automatic update) for a legal copy of
Office.

For the random coefficients estimates, the hierarchical Bayesian model specified above
includes heterogeneity in all utility coefficients: intercepts, price, download time, and avail-
ability of update. I first report the posterior mean of the heterogeneity effects attributed
to student demographics (△) in Table 7.10 I also report the 5th and 95th percentile of the
draws. There are three things to note. First, younger students are more price-sensitive.
 When age increases by 1, the price coefficient increases by 0.04 on average (which makes the
price coefficient smaller in absolute value because the price coefficient is negative). Second,
the group of students with recent BT experience (about two-thirds of the sample) exhibits
substantial difference to the group without recent BT experience. The former group has a
greater preference for Internet-pirated Office and a distaste for legal Office.11 It is also more
price-sensitive (the price coefficient becomes more negative and decreases by 0.19 on average
for this group). Students with higher family incomes are also less likely to engage in Internet
piracy.

[Insert Table 7]

The estimation procedure above provides a fitted density of utility coefficients across
all students. Hence, I report the marginals of this joint distribution to show the need for
flexibility in modeling unobserved heterogeneity.
Figure 2 plots the fitted densities of intercepts (μ) from the one- and three-component mixture models for all six utility coefficients. The vertical line is the basic logit estimate.

[Insert Figure 2]

The upper panel of Figure 2 provides compelling evidence of the need for a model that can address unobserved heterogeneity. The intercept estimates for all sources of Office exhibit substantial dispersion in the distribution of the unobserved heterogeneity. The random coefficient model’s ability to capture the level of dispersion of the unobserved heterogeneity is the main reason for its significant improvement in fit compared to the basic logit model.

4.2 Price Elasticities

[Insert Table 8]

Table 8 shows the elasticities implied by the coefficients, which illustrates how prices and download time affect the demand for Office. The three columns are the elasticity estimates under the homogenous coefficients model, one-component model, and three-component model. As can be observed, the substitution patterns, demonstrated through the own and cross price elasticities, exhibit substantial difference between the homogenous coefficient and random coefficient models.

First, let us look at the own price elasticity of legal Office. A legal copy of Office is sold at HK$500 ($60) to students in Hong Kong. Under this price, the own price elasticity for legal Office is slightly above one at -1.147, which implies that the marginal cost for one copy of Office is approximately HK$64 ($8) using the inverse elasticity rule. The high mark-up is expected in this industry because the fixed cost, in the form of R&D expenditure, is high.
for software like Office. Note that the own price elasticity is much higher at -1.32 under the homogenous coefficient model, which would over-estimate the marginal cost of legal Office.

Second, the random coefficient model also exhibits a more reasonable substitution pattern. As expected, a one percent increase in the price of legal Office would encourage more street and Internet piracy. However, the street piracy would increase more (about 0.35 percent) than Internet piracy (about 0.1 percent). Furthermore, when the cost of one type of piracy is higher, people tend to substitute that with another type of piracy rather than switching to purchase a legal copy. This more reasonable substitution pattern cannot be seen using the homogenous coefficients model.

Third, the elasticities of demand with respect to download time are small (less than 0.1%). As people can do other things (like surfing on YouTube) while downloading Office through BT, the time cost of downloading is low and, thus, the demand is not responsive to download time.

5 Counterfactual

[Insert Table 9]

With the demand estimates of Office from different sources, I can proceed to evaluate different copyright policies. In this section, I first examine the effect of the copyright policy of the Hong Kong SAR government, which is to eliminate street piracy. Then I evaluate the true profit loss due to piracy from all sources and contrast it with the profit loss calculated by the BSA method.

The counterfactuals are based on the market situation described in Table 9. The official version of Office specified in the survey costs approximately HK$1170 ($150), but students
can purchase a student version for HK$500 ($64). The prices of pirated Office on the street vary and are HK$50 ($6.4) on average. The results do not change significantly if I vary the price from HK$30 to HK$100. The download time of an illegal copy of Office depends on the Internet connection speed and the popularity of the BT seed that the Office file is downloaded with.

As mentioned previously, there could be a concern that young students compose the majority of the sample. As the estimates in Table 7 imply, they have a different substitution pattern compared to their older counterparts. In particular, older people have a higher tendency to buy Office from a legitimate source, and they are less price-sensitive. Thus, evaluating the effect of the street-piracy elimination policy based on this sample could underestimate the growth of demand for Office from legitimate sources.

To address this concern, I utilize the true demographic distribution in Hong Kong as a basis to simulate the utility coefficients of 10,000 individuals using the estimates from Table 7 and Figure 2. There are several things to note in this simulation. First, I restrict the age to between 15 and 50 (the oldest respondent in my sample is 50 years old). Second, I take the estimates from the Intellectual Property Department in Hong Kong and assume the proportion of people with BT experience to be 20%. Third, due to data limitations, I assume the distribution of the age, family income and BT experience to be independent. Fourth, I assume the simulated sample of students pays a discounted price for Office (HK$500) while the simulated sample of adults pays the standard price (HK$1,175).
5.1 The No-Street-Piracy Policy

As previously noted, Hong Kong and many developing countries have put a great amount of effort into reducing street piracy. However, such efforts can become less effective with more widespread Internet piracy because of the substitutability between street and Internet piracy.

In this subsection, I evaluate the effectiveness of a copyright policy that completely eliminates street piracy. In particular, I remove the option of obtaining counterfeit copies of Office on the street. This copyright policy is effective if most of the demand for street-pirated Office goes to legal Office. I conduct this counterfactual exercise using the original sample, the simulated sample of students (defined as those simulated individuals younger than 22), and the simulated sample of adults.

The upper half of Table 10 shows the result of the counterfactuals. When the government completely eliminates street piracy, the demand for Internet piracy increases by 20.8%, about the same as the increase in the demand for Office from a legal source (21.7%). The estimates are not drastically different between students and adults. In both simulated samples, the percentage increase in the demand for Internet piracy is about the same as that of the demand for Office from a legal source. Additionally, because the demand for Internet piracy is higher than the demand for legal Office (60% vs. 20% market share), most students who would choose street piracy would switch to Internet piracy instead of buying the legal version of Office.

[Insert Table 10]

The lower half of Table 10 shows the increase in Microsoft’s expected profit under such a policy. Taking the substitution effect into account, the expected profit would increase by
about HK$15 per person in the sample if there was no street piracy. This estimate is much lower than the estimate calculated using the BSA assumption that each piece of pirated software is a lost sale, which is about HK$86. The substitution of street piracy with Internet piracy and the outside option significantly undermines the effectiveness of the policy that eradicates street piracy alone.

5.2 Other Copyright Enforcement Policies

To further illustrate the effectiveness of various copyright enforcement policies in a world with more than one channel by which to pirate software, I simulate the demand and the expected profit using the original sample under various piracy prices. In the simulation, the price of a pirated copy of Office on the street ranges from HK$0 to HK$500 (the highest in the conjoint survey for a pirated copy), and the download time ranges from zero to five days (the highest in the conjoint survey). As Table 9 states, the current market price of a pirated copy of Office is HK$50 and the downloading time is 0.5 day.

Figure 3 shows the expected profit under various piracy prices. It provides a compelling case that a successful copyright enforcement policy necessitates action against all sources of piracy. If the government only tackles one type of piracy, the price of that type of piracy will go up while the price of another type will stay the same. Figure 3 shows that the expected profit will only increase marginally. For instance, when the price of street-pirated Office increases from HK$50 to HK$500, with the download time staying at 0.5 day, the expected profit will only increase from HK$70 to HK$80. However, the same increase in expected profit can be reached when the price of street-pirated Office increases to HK$200 and download time increases to one day.
5.3 Revenue Loss From All Piracy

Suppose that the Hong Kong government could enforce copyright to perfection and completely eradicate piracy of all sorts. What would be the gains for Microsoft? The BSA answers this question by assuming that each piece of pirated software is a lost sale. However, absent any form of piracy, a person can choose not to buy and use the software at work or at school, or she can use free and legitimate substitutes such as OpenOffice. Ignoring the substitution of outside options could significantly overestimate the true gain from eradicating piracy.

I use the estimates of the substitution pattern between different sources of piracy and legal sources of Office to test whether the BSA has inflated the piracy loss and by how much. In particular, in this counterfactual, I remove the option of both sources of piracy to calculate the loss in profits due to piracy under two different assumptions. Under the first assumption, consumers can choose the outside option. Under the second assumption, consumers who would choose either type of piracy are forced to buy the legal version of Office (the BSA assumption).

Table 11 shows that ignoring the substitution effect can substantially inflate the estimates of gains from eradicating piracy. Because a significant portion of people would decide not to buy if piracy was not possible, the true gain in profit would be 10–15% of what the BSA claims it to be.
6 Conclusion

Hong Kong’s main copyright enforcement policy is to crack down on retail shops engaging in street piracy. Despite the close to disappearance of these shops, the software piracy rate is still well above 40%. This begs the question of how effective the copyright enforcement policy is in an environment where there is another form of piracy—Internet piracy. To answer the question, I construct a unique set of conjoint survey data from 281 college students in Hong Kong, estimate the demand for Office from legal sources and different sources of piracy, and then use the estimates to conduct counterfactuals.

There are two main results. First, most students would switch to Internet piracy even if the government eradicated street piracy. The expected profit for Microsoft would increase only by HK$15.2 ($2) per person in the sample. This has profound implications for many developing countries where both street and Internet piracy exist. As the counterfactual results suggest, tackling both types of piracy would be more effective than focusing all resources on tackling street piracy alone.

Second, governments and international organizations such as the World Trade Organization, which often rely on the BSA’s estimates on gain from eradicating piracy to guide their trade policies, need to treat those estimates with caution. The BSA’s estimates ignore the substitution between piracy and outside options, and are thus hugely inflated. The counterfactual exercise shows that the true gain from eradicating piracy are only 10 - 15% of the BSA’s estimates.
Notes

1The BSA uses survey data to estimate the number of total software units and pirated software units installed in each country. It then defines the piracy rate as the ratio of pirated software units to total software units.

2Only one person has ever been convicted of the illegal distribution of copyrighted works using BT in Hong Kong. The case occurred in 2005.

3Carlsson and Martinsson (2001) and Hensher, Louviere, and Swait (1999) collect both stated-preference and revealed-preference data of donation choice and freight shipper choice. They show that the hypothesis of parameter equality holds for most parameters across the two data sources.

4Leung (2009) uses a similar approach to estimate the complementarity between music and iPods, and to evaluate various copyright policies. Hensher and Louviere (1983) forecast the choice of attendance at various types of international expositions. Hensher (1994) reviews the development of using conjoint analysis to estimate transportation choice. Many multinational corporations such as Marriott, Procter & Gamble, and General Motors also use conjoint survey data to estimate demand for new products (Green, Krieger, and Wind (2004) and Orme (2005)).

6Johnson and Orme (1996) suggest that the reliability of the responses would not diminish
with up to 20 tasks. However, due to the time limit for each survey run (ten minutes), I decided to put ten tasks in the survey.

7 Students chose option 4 if they did not want to use Office on their personal computers. As explained to them at the beginning of the survey, this would not prevent them from using Office in other places (like computers in campus), or using substitutes (such as OpenOffice).

8 One needs to impose constraints on the Gibbs sampler to fix an identification problem called “label switching” if inference is desired for the mixture component parameters. This is not a problem here because I am interested in estimating individual student parameters and their distribution across students only. An unconstrained Gibbs sampler is enough to ensure identification. See Rossi, Allenby, and McCulloch (2005) for more details.

9 Interested readers can find the details of the implementation of the MCMC draws in Chapter 5 of Rossi, Allenby, and McCulloch (2005).

10 I report the estimates from the three-component case. The other cases are similar and thus omitted here.

11 The “distaste for legal Office” is not statistically significant, but it has the expected sign.

12 The demographic distribution information is from the Hong Kong Census conducted in 2006, which is publicly available.
References

John Wiley and Sons, Hoboken, NJ.

Sawtooth Software Technical Paper Series.
Figures
Figure 1: A Sample Task of the Conjoint Survey

First choice: 1 2 3 4
Second choice: 1 2 3 4

<table>
<thead>
<tr>
<th>Option 1:</th>
<th>Option 2:</th>
<th>Option 3:</th>
<th>Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy a legal copy of Office CD</td>
<td>Buy a pirated copy of Office CD</td>
<td>Download a pirated copy of Office on the internet</td>
<td>Do not buy and use Office</td>
</tr>
<tr>
<td>$300</td>
<td>$5</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Auto update</td>
<td>No update</td>
<td>No update</td>
<td></td>
</tr>
<tr>
<td>30 mins of search and download time</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2: Fitted Densities for Random Coefficients

- Legal Office
- Street Pirated Office
- Internet Pirated Office
- Price
- Download Time
- Update
Figure 3: Simulated Profit Under Different Piracy Prices
Tables
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Disc Seizure (in millions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td>N.A.</td>
<td>6.2</td>
<td>7.3</td>
<td>3.8</td>
<td>3.0</td>
<td>4.3</td>
<td>2.2</td>
<td>2.0</td>
<td>0.89</td>
</tr>
<tr>
<td>Value</td>
<td>N.A.</td>
<td>135.3</td>
<td>157.8</td>
<td>89.2</td>
<td>72.4</td>
<td>99.1</td>
<td>52.3</td>
<td>71.0</td>
<td>26.0</td>
</tr>
<tr>
<td>Shops Engaged in Piracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td>1,000</td>
<td>105</td>
<td>70</td>
<td>50</td>
<td>45</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>< 10</td>
</tr>
</tbody>
</table>

Source: Hong Kong Customs and Excise Department
Table 2: Age and Family Income Distribution among Sample

<table>
<thead>
<tr>
<th>Age</th>
<th>Percentage of the Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-21</td>
<td>76%</td>
</tr>
<tr>
<td>22-29</td>
<td>18%</td>
</tr>
<tr>
<td>30 or above</td>
<td>6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Income</th>
<th>Percentage of the Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>HK$0 - 10,000</td>
<td>25.74%</td>
</tr>
<tr>
<td>HK$10,001 - 20,000</td>
<td>33.46%</td>
</tr>
<tr>
<td>HK$20,001 - 30,000</td>
<td>16.18%</td>
</tr>
<tr>
<td>HK$30,001 - 40,000</td>
<td>10.29%</td>
</tr>
<tr>
<td>HK$40,001 - 50,000</td>
<td>6.25%</td>
</tr>
<tr>
<td>HK$50,001 - 60,000</td>
<td>8.09%</td>
</tr>
<tr>
<td></td>
<td>Mean (s.d.)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Age</td>
<td>21.37 (4.18)</td>
</tr>
<tr>
<td>Have Used BT Recently</td>
<td>0.68</td>
</tr>
<tr>
<td>Hours Spent on the Internet/Day</td>
<td>4.24 (3.22)</td>
</tr>
<tr>
<td>Use Legal Windows</td>
<td>0.72 (0.45)</td>
</tr>
</tbody>
</table>

N=281
<table>
<thead>
<tr>
<th></th>
<th>Legal</th>
<th>Counterfeit CD</th>
<th>Illegal Download</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Virus Software</td>
<td>30%</td>
<td>5%</td>
<td>65%</td>
</tr>
<tr>
<td>Office</td>
<td>38%</td>
<td>24%</td>
<td>38%</td>
</tr>
</tbody>
</table>

N=281
Table 5: Logit Regression of Piracy on Demographics*

<table>
<thead>
<tr>
<th></th>
<th>Anti-Virus Software</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.076</td>
<td>0.506</td>
</tr>
<tr>
<td></td>
<td>(0.214)</td>
<td>(0.450)</td>
</tr>
<tr>
<td>Age²</td>
<td>-0.002</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Family Income (HK$10,000)</td>
<td>-0.284***</td>
<td>-0.262**</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.092)</td>
</tr>
<tr>
<td>Hours Spent on the Internet/Day</td>
<td>-0.003</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Have Used BT Recently</td>
<td>-0.229</td>
<td>0.563*</td>
</tr>
<tr>
<td></td>
<td>(0.319)</td>
<td>(0.308)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.758</td>
<td>-4.675</td>
</tr>
<tr>
<td></td>
<td>(2.900)</td>
<td>(5.444)</td>
</tr>
<tr>
<td>N</td>
<td>233</td>
<td>233</td>
</tr>
</tbody>
</table>

* Standard errors are reported in brackets. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
<table>
<thead>
<tr>
<th></th>
<th>Log Marginal Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo. Coef.</td>
<td>-2490.7</td>
</tr>
<tr>
<td>1 comp.</td>
<td>-1000.8</td>
</tr>
<tr>
<td>3 com.</td>
<td>-1001.8</td>
</tr>
</tbody>
</table>
Table 7: Posterior Mean of \triangle^*

<table>
<thead>
<tr>
<th></th>
<th>Legal Office</th>
<th>Street-Pirated</th>
<th>Internet-Pirated</th>
<th>Price</th>
<th>DT</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.011</td>
<td>-0.001</td>
<td>-0.037</td>
<td>0.040</td>
<td>-0.0004</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>[-0.045, 0.026]</td>
<td>[-0.043, 0.036]</td>
<td>[-0.083, 0.001]</td>
<td>[-0.019, 0.061]</td>
<td>[-0.031, 0.029]</td>
<td>[-0.022, 0.060]</td>
</tr>
<tr>
<td>BT (0 or 1)</td>
<td>-0.138</td>
<td>0.150</td>
<td>1.017</td>
<td>-0.195</td>
<td>-0.089</td>
<td>-0.145</td>
</tr>
<tr>
<td></td>
<td>[-0.441, 0.227]</td>
<td>[-0.235, 0.528]</td>
<td>[0.690, 1.341]</td>
<td>[-0.367, -0.016]</td>
<td>[-0.298, 0.150]</td>
<td>[-0.508, 0.192]</td>
</tr>
<tr>
<td>Income (1-6)</td>
<td>0.105</td>
<td>-0.111</td>
<td>-0.195</td>
<td>0.052</td>
<td>-0.028</td>
<td>0.091</td>
</tr>
<tr>
<td></td>
<td>[-0.028, 0.229]</td>
<td>[-0.222, 0.027]</td>
<td>[-0.328, -0.077]</td>
<td>[-0.011, 0.113]</td>
<td>[-0.096, 0.037]</td>
<td>[-0.008, 0.214]</td>
</tr>
</tbody>
</table>

The 5th and 95th percentiles of the estimates are reported in brackets.
<table>
<thead>
<tr>
<th>Price of Legal Office</th>
<th>Homo. Coef.</th>
<th>1 comp.</th>
<th>3 comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal Office Share</td>
<td>-1.321</td>
<td>-1.110</td>
<td>-1.147</td>
</tr>
<tr>
<td></td>
<td>[-1.333, -1.311]</td>
<td>[-1.287, -0.937]</td>
<td>[-1.372, -0.925]</td>
</tr>
<tr>
<td>Street Pirated Office Share</td>
<td>0.290</td>
<td>0.286</td>
<td>0.345</td>
</tr>
<tr>
<td></td>
<td>[0.289, 0.292]</td>
<td>[0.224, 0.361]</td>
<td>[0.257, 0.444]</td>
</tr>
<tr>
<td>Internet Pirated Office Share</td>
<td>0.290</td>
<td>0.114</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>[0.289, 0.292]</td>
<td>[0.091, 0.139]</td>
<td>[0.080, 0.134]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price of Street-Pirated Office</th>
<th>Homo. Coef.</th>
<th>1 comp.</th>
<th>3 comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal Office Share</td>
<td>0.035</td>
<td>0.041</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>[0.035, 0.036]</td>
<td>[0.032, 0.051]</td>
<td>[0.034, 0.057]</td>
</tr>
<tr>
<td>Street-Pirated Office Share</td>
<td>-0.126</td>
<td>-0.360</td>
<td>-0.363</td>
</tr>
<tr>
<td></td>
<td>[-0.127, -0.125]</td>
<td>[-0.396, -0.325]</td>
<td>[-0.409, -0.320]</td>
</tr>
<tr>
<td>Internet-Pirated Office Share</td>
<td>0.035</td>
<td>0.088</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>[0.035, 0.036]</td>
<td>[0.075, 0.103]</td>
<td>[0.064, 0.097]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Download Time of Internet-Pirated Office</th>
<th>Homo. Coef.</th>
<th>1 comp.</th>
<th>3 comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal Office Share</td>
<td>0.063</td>
<td>0.043</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>[0.063, 0.064]</td>
<td>[0.030, 0.057]</td>
<td>[0.028, 0.059]</td>
</tr>
<tr>
<td>Street-Pirated Office Share</td>
<td>0.063</td>
<td>0.092</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>[0.063, 0.064]</td>
<td>[0.073, 0.113]</td>
<td>[0.087, 0.133]</td>
</tr>
<tr>
<td>Internet-Pirated Office Share</td>
<td>-0.053</td>
<td>-0.064</td>
<td>-0.069</td>
</tr>
<tr>
<td></td>
<td>[-0.054, -0.053]</td>
<td>[-0.076, -0.054]</td>
<td>[-0.081, -0.058]</td>
</tr>
</tbody>
</table>

* The 5th and 95th percentiles of the estimates are reported in brackets.
Table 9: Microsoft Office Market in Hong Kong

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price for Legal Office</td>
<td>HKG$500</td>
</tr>
<tr>
<td>Price for Street-Pirated Office</td>
<td>HKG$50</td>
</tr>
<tr>
<td>Download Time of Internet-Pirated Office</td>
<td>0.5 day</td>
</tr>
</tbody>
</table>

Exchange Rate: HK$7.8/US$1
Table 10: Effectiveness of a Policy that Eradicates Street Piracy

<table>
<thead>
<tr>
<th></th>
<th>Changes in Estimated Demand (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original Sample (Students)</td>
<td>Sim. Sample (Students)</td>
<td>Sim. Sample (Adults)</td>
</tr>
<tr>
<td>Legal</td>
<td>↑ 21.7</td>
<td>↑ 20.3</td>
<td>↑ 23.8</td>
</tr>
<tr>
<td></td>
<td>[17.5, 26.3]</td>
<td>[10.8, 37.9]</td>
<td>[4.9, 63.9]</td>
</tr>
<tr>
<td>Internet Piracy</td>
<td>↑ 20.8</td>
<td>↑ 20.3</td>
<td>↑ 24.7</td>
</tr>
<tr>
<td></td>
<td>[17.3, 24.0]</td>
<td>[10.7, 38.7]</td>
<td>[8.7, 50.9]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Changes in Estimated Profit for Microsoft (HK$ per person)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original Sample (Students)</td>
<td>Sim. Sample (Students)</td>
<td>Sim. Sample (Adults)</td>
</tr>
<tr>
<td>This Paper’s Estimate</td>
<td>↑ 15.2</td>
<td>↑ 12.6</td>
<td>↑ 26.1</td>
</tr>
<tr>
<td></td>
<td>[12.4, 18.2]</td>
<td>[5.5, 21.8]</td>
<td>[1.7, 63.7]</td>
</tr>
<tr>
<td>BSA’s Estimate</td>
<td>↑ 85.9</td>
<td>↑ 86.1</td>
<td>↑ 207.4</td>
</tr>
<tr>
<td></td>
<td>[78.2, 92.7]</td>
<td>[48.1, 136.1]</td>
<td>[80.9, 411.0]</td>
</tr>
</tbody>
</table>

The 5th and 95th percentiles of the estimates are reported in brackets.
Table 11: The BSA Over-estimates Gains from Eradicating Piracy*

<table>
<thead>
<tr>
<th>Gains in Profit (Per Person)</th>
<th>Original Sample</th>
<th>Sim. Sample</th>
<th>Sim. Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent Piracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This Paper’s Estimates</td>
<td>48.6</td>
<td>43.2</td>
<td>64.8</td>
</tr>
<tr>
<td></td>
<td>[40.8, 56.5]</td>
<td>[22.2, 66.4]</td>
<td>[5.0, 108.4]</td>
</tr>
<tr>
<td>BSA Estimates</td>
<td>322.4</td>
<td>324.1</td>
<td>622.8</td>
</tr>
<tr>
<td></td>
<td>[315.3, 329.0]</td>
<td>[268.1, 343.7]</td>
<td>[402.0, 778.1]</td>
</tr>
</tbody>
</table>

* These estimates are in Hong Kong dollars. The 5th and 95th percentiles of the estimates are reported in brackets.